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ABSTRACT

A practical solution to providing effective command, control, and communications (C3)
information from the warfighting commander to the edge of the battle space involves using
light-weight, handheld devices connected on wireless networks; however, infrastructure-
based wireless networks, especially at the edge, are characterized by wildly fluctuating
bandwidth, intermittent connectivity, and unreliable connectedness of mobile clients. Com-
bat units require connectivity of smart devices that is resilient to the dynamic changes of
network topology yet can still provide timely dissemination of communications and intel-
ligence so that warfighters may succeed on the battlefield. This thesis aims to create a
communications network of smart devices, using their embedded Bluetooth communica-
tions capability. This thesis tests the throughput of the system at the maximum connection
distances between devices. It explores the systems capability to properly process and for-
ward network and communications traffic. Lastly, it evaluates the system’s ability to adjust
to device connection loss while maintaining connections already established and rebuild-
ing connections with devices within connectivity range. The developed application offers
a communications network that adapts to device loss by adjusting the network topology
while still providing the users with real-time chat capability of all locally available devices.
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CHAPTER 1:
Introduction

As battlefield weaponry and tactics advance, so must the ways in which combat units con-
duct intra- and inter-unit communications. A practical solution to providing effective com-
mand, control, and communications (C3) information from the battlefield commander to
the edge of the battle space involves using light-weight, handheld devices connected on
wireless networks. Typical wireless networks connected through a cellular infrastructure
are difficult to establish at the contested edges of the battle space, costly to maintain, and
lack the agility required in very fluid environments. The fluidity at these battle space bound-
aries is further characterized by wildly fluctuating bandwidth, intermittent connectivity, and
unreliable connectedness of mobile devices.

The military has progressed over the last several years toward using tactical smartphones
as a means for C3; however, these systems emerged with limitations, including a lack of
supporting applications and a reliance on pre-existing military radios as a transmission
medium [1]–[3]. In order to build an agile, battlefield-ready, wireless network of smart de-
vices, the network should rely on the embedded wireless capabilities of each smart device
(e.g., Bluetooth, Wi-Fi, etc.) and not on the well-established, mobility-constrained infras-
tructure on which these devices normally communicate. Through the use of the tactical
smartphone’s embedded communications capabilities, the network can adapt to the users’
needs, the types of data being transmitted, and the distances over which communications
must occur. This would provide combat forces with a seamless communications system
that flexes to the environment as much as they do.

1.1 Purpose
The purpose of this thesis is to build an infrastructure-less communications network of
mobile devices through the development of user application software, created for the An-
droid operating system (OS). The thesis includes testing the adaptability of this network to
changes in connectivity and network topology typifying the edges of the battlefield. The
developed system provides a means of real-time communication by which war-fighting
units can communicate across the battle space. This work creates the foundation for a more
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advanced wireless communications network that incorporates the myriad other embedded
wireless technologies.

1.2 Scope and Boundaries
This thesis explores a smart device technology solution as a means of C3 at the edge of the
battle space, addressing the challenges posed by implementing such a network in a fluid
environment. Although smart devices can use several different wireless communications
protocols, this thesis focuses strictly on the embedded Bluetooth capability. This thesis
provides a real-time chat application as the starting point for communication across the
network, excluding from the research real-time audio or video. The developed application
processes and forwards messages and network information from one to all other devices.
The established network is built to gracefully handle connection loss, recreating the net-
work topology, as needed, to incorporate all reachable devices.

The battlefield may exist in any clime and place; however, this thesis does not examine
the overall effects of weather and terrain on the communications network. All tests con-
ducted occur in a level, controlled, unobstructed communications plane. This thesis does
not include the effects maintaining a flexible network has on battery consumption of the
individual devices.

Due to limitations in the embedded wireless technologies, network creation, management,
and data forwarding must occur at the application layer. This thesis examines the end-to-
end throughput and the ordered delivery of data to ensure that the application provides a
viable solution. Lastly, the thesis examines the capability of the network to handle connec-
tion loss between devices. This thesis shows that the embedded wireless communications
capabilities of smart devices can be used to implement a battlefield-ready network of smart
devices.

1.3 Thesis Organization
This thesis comprises four additional chapters: background, design and implementation,
testing and evaluation, and conclusions and future work. This section outlines each chapter
in brief detail.
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1.3.1 Background
This chapter provides information on the Bluetooth architecture and previously developed
work that bridges a gap between infrastructure-based and infrastructure-less mobile net-
works. Detailing the inner-workings of the Bluetooth architecture provides clarification as
to how the developed software builds, manages, and disseminates information across the
infrastructure-less network. It also forms the basis of common terminology used through-
out the thesis. Providing information on previously conducted work highlights the advances
made—and the limitations that still exist—in this field of study.

1.3.2 Design and Implementation
This third chapter details the individual elements of the software that was created. It pro-
vides information on the multi-threaded framework used in order to build connections be-
tween individual devices. Furthermore, it shows how the software manipulates these indi-
vidual connections and implements various timing schemes in order to build a network that
can both forward data and react to connection loss.

1.3.3 Testing and Evaluation
This chapter describes the three tests that evaluate the individual connections between de-
vices and the larger network. The first test stresses the individual connection between two
devices, at the maximum sustainable connection distance, in order to understand the ap-
plication end-to-end throughput. Since all forwarding must occur at the application level,
the second test examines the ability of the application to properly forward—in order—
transmitted information across various network topologies and sizes. The last test manipu-
lates different network topologies in order to evaluate the system’s ability to recover from
connection loss between devices.

1.3.4 Conclusions and Future Work
The last chapter summarizes the work and findings of this thesis. It also provides sug-
gestions for future research and development work. The suggestions made will help build
a more robust and capable infrastructure-less network that has the potential to benefit the
military and civilian world for years to come.
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CHAPTER 2:
Background

This thesis explores the use of Bluetooth to create a power-aware, multi-hop personal area
network (PAN) that exchanges messages between members of a group. An understanding
of these main features and the work of other application developers will aid in the provide
the framework for the decisions and implementations made herein.

2.1 Bluetooth
Swedish mobile-phone manufacturer Ericsson developed Bluetooth in 1994 as a means of
connecting devices through a short-range radio link [4]. The Institute of Electrical and
Electronics Engineers (IEEE) originally maintained the standard and continues to maintain
the personal area network standards of 802.15, but today, the Bluetooth Special Interests
Group (SIG), an organization with over 25,800 industry members, monitors and maintains
Bluetooth standards.

Bluetooth operates in the unlicensed industrial, scientific and medical (ISM) 2.4 GHz band
using a spread spectrum, frequency hopping, full-duplex signal [5]. Bluetooth can connect
up to eight devices, forming a piconet, within a range of 10 meters to more than 100 meters,
depending on the class of device. Two or more piconets can connect together, forming a
scatternet. This can allow the creation of localized, ad-hoc networks of up to 80 devices [4].
The Bluetooth protocol stack stands as the crucial element that provides this networking
and data transmission capability of Bluetooth-enabled devices.

2.1.1 Personal Area Networks
IEEE 802.15 [6] covers the details of wireless PAN, under which Bluetooth falls. It defines
PANs as a network controlled by a single person or a family [4]. The original standard,
802.15.1, initially defined the Bluetooth specifications; however, the Bluetooth SIG now
sets the standards for Bluetooth, and 802.15 covers other methods of developing PANs
beyond Bluetooth. In the world of Bluetooth, PANs comprise piconets and scatternets.
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Piconets
The piconet rests as the basic unit for modeling a Bluetooth-defined personal area network.
The piconet consists of one master device connected to at least one, but up to seven slave
devices (see Figure 2.1 for various sized piconet examples).

Figure 2.1: Various piconet sizes

The master device will dictate the frequency-hoping sequence and time-phase offset based
on its own 48-bit address, as mentioned in Section 2.1.2. All devices of the same piconet
operate on the same hop set and offset. Upon initial connection, the master sends its clock
count to the slaves who then create an offset which they add to their native clocks for
synchronization [7]. With a hop rate of 1600 hops per second, the physical channels are
divided into sequentially numbered, time slots of 0.625 µs [4]. The 27 most significant bits
of the master clock determine the time slot numbers, ranging from 0 to 227 −1.

Bluetooth uses time division duplex (TDD) to determine when the master and the slave
transmit data. The master will transmit data on even numbered time slots, and slaves trans-
mit on odd numbered ones. Slaves can transmit only data to the master, but a master can
transmit data to any or all slaves. Figure 2.2 depicts a scenario where multiple slaves exist
on a single piconet. In the event of multiple slaves on a single piconet, a slave will transmit
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data only if the master had addressed it directly during the preceding even time slot. All
slaves will listen for the master to address them, during even time slots. If the master does
not address a slave, then that slave will sleep until the next even time slot before listening
again. The master may not transmit any data during an even time slot (see Figure 2.2, time
slot f (k+ 8)), in which case no slaves will transmit data during the proceeding odd time
slot. The master may do this when it has no data to send or it has commitments in another
piconet.

Figure 2.2: Master and multi-slave communications timing, from [7]

Figure 2.3 depicts the Bluetooth TDD system, where f (k+n) indicates the frequency used
at time slot k+n. Note that once a master or slave transmits, it may continue to do so for
one, three, or five time slots. If a device requires more than one time slot to complete a
transmission, it will use the same frequency throughout the transmission, bypassing other
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intended frequencies of the hop sequence. When the transmission completes, the hop se-
quence will resume on schedule, skipping the either two or four hop frequencies that would
have occurred during that transmission time.

Figure 2.3: Bluetooth TDD time slots, from [7]

Scatternets
Multiple piconets can reside in the same geographic location. When a device participates
in two or more piconets, the combination of those piconets creates a scatternet. A single
device can serve as a slave for multiple piconets; however, it can only ever serve as a
master for one piconet. Since each piconet has its own master, each will have its own hop
set and phase. A device that operates within multiple piconets will use time multiplexing
in order to communicate on the appropriate channel and phase for each piconet. Figure 2.4
demonstrates the scenario where a single device serves as both a master of one piconet and
a slave of another, where f (k + n) and g(k + n) are the respective hop set time slots for
each piconet. Note that the phases of the two piconets do not align; therefore, when the
device transitions from one piconet to the other it must wait to transmit or receive data until
the appropriate time slot occurs. This mean that although the time slot g(k+9) is free for
transmission the device cannot transmit during that slot, rendering the time slot unuseful,
because it did not receive a packet addressed to it from the master in the preceding time
slot; therefore, it must wait until addressed in time slot g(k+10) before sending data in the
proceeding time slot, g(k+ 11). Although this methodology creates inefficiencies in the
use of the physical layer, it provides the means necessary for a series of piconets to become
a scatternet.
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Figure 2.4: Master-slave device useful and unuseful time slots, from [8]

The inter-device, master-slave roles will switch during the creation of scatternets. In the
case where a slave of one piconet creates a connection, as the master, with another piconet,
a role switch will occur with that slave’s original master. Figure 2.5 depicts just such an
occasion: Figure 2.5(a) shows three piconets, where devices A, B, and F are the masters
of E, C and D, and G and H, respectively. When slave device E forms a connection with
master devices B and F (as depicted by the new logical link lines), devices B and F assume
the roles of both master and slave; furthermore, a role switch occurs between A and E.
Figure 2.5(b) shows the role transitions upon the completion of building the scatternet.

Figure 2.6 shows a similar role reversal scenario, but in this instance device A has several
slaves, not just device E. During the building of the scatternet, by way of device E creating
connections to devices B and F, devices A and E will still perform a role switch, but device
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A will remain the master of the other nodes in its original piconet, devices Y and Z [7].

(a) Three piconets before scatternet (b) Scatternet created from three piconets

Figure 2.5: Piconets before and after the creation of one scatternet

(a) Piconets before scatternet and role switch (b) Scatternet after A-E role switch

Figure 2.6: Role reversal after the creation of a scatternet

2.1.2 Protocol Stack
The Bluetooth specification [7] defines the protocol stack in terms of core and profile speci-
fications. The core specifications detail the use of several data-link control protocols and the
physical layer within the protocol stack. The profile specification outlines various features
of each layer—both core and non-core—in the protocol stacks based on different usage
models of the Bluetooth system. The profiles define the interactions between layers on a
specified device and the peer-to-peer interaction of each layer across devices. These stan-
dardized profiles provide interoperability between different system manufacturers whose
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products perform the same function (e.g., headset linkage, internet bridge, file transfer,
etc.). Figure 2.7 depicts a generic Bluetooth profile separated into the host and primary
controller portions of the stack. The various boxes represent the different types of proto-
cols (core, cable replacement, service, and adopted) and the interaction between the layered
protocols.

The Bluetooth specifications divides the stack into upper and lower layers, delineated by
a host controller interface (HCI). The higher layer protocols, also known as the Blue-
tooth Host, manage communications between the software application and the primary
controller. The Bluetooth Host comprises a single core protocol, Logical Link Control
and Adaptation Protocol (L2CAP), a service protocol, Service Discovery Protocol (SDP),
and many other potential protocols: the cable-replacement protocol, radio frequency com-
munication (RFCOMM), the telephony-control protocol, telephony control specification
binary (TCS BIN), and other adopted protocols that the Bluetooth specification does not
detail (e.g., Wireless Application Protocol (WAP), Transmission Control Protocol (TCP),
Internet Protocol (IP)).

The lower-layer protocols, also known as the Primary Controller, manage the inter-device
connections [5]. It comprises several protocols, including three core protocols: Link Man-
ager Protocol (LMP), baseband, and the physical radio. These protocols offer three basic
services: two control-plane services (device and transport control), and a single user-plane
service (data service). The device control service provides a means for modification of the
Bluetooth device’s behavior and modes, while the transport control service facilitates the
creation, modification, and release of channels and links. The data service provides for the
submission of data and its subsequent transmission across the designated channels.

Although there exist many protocols and protocol profiles, the development of handheld
device communications require several essential protocols: RFCOMM, L2CAP, and base-
band. RFCOMM emulates a serial port for the application and multiplexes it for L2CAP.
L2CAP converts the data into specific sized data units which it then transfers to the base-
band for transmission across the physical medium.
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Figure 2.7: Specified Bluetooth Protocol Stack, from [4]

RFCOMM
Android applications use the RFCOMM protocol to provide an emulated serial port over
L2CAP through which the application sends and receives data. It supports up to 60 si-
multaneous connections between two Bluetooth connected devices; however, actual im-
plementation varies based on the application specific requirements. RFCOMM identifies
a connection between devices based on its Data Link Control Identifier (DLCI), a six-bit
identification code. RFCOMM assigns a value from 2 to 61 for the unique connections; it
uses DLCI 0 for the control channel, while DLCI 62 and 63 are reserved and DLCI 1 is
unusable [9].

Figure 2.8 depicts the Bluetooth-enabled, Android application reference model for RFCOMM.
The application will request a port from the RFCOMM protocol; the Port Emulation Entity
will link the application program interface (API) to this RFCOMM service. In order for an
application to connect and share data, it must use this RFCOMM architecture.

RFCOMM multiplexes the various emulated serial ports, providing a data stream and con-
trol channel to the L2CAP [9]. RFCOMM relies upon L2CAP to establish a connection

12



Figure 2.8: RFCOMM Reference Model, from [9]

with another RFCOMM entity on the other side; furthermore, it relies on L2CAP to pro-
vide non-duplicated data in the correct order across the connection.

L2CAP
L2CAP is the bridge between the Bluetooth Host and the lower layer protocols. As such,
it manages resources when submitting data to the baseband for transmission across the
link. L2CAP segments and order the application’s Service Data Units (SDUs) into man-
ageable sized Protocol Data Units (PDUs). Based on the size of the controller buffer, it
will fragment the PDU into start and continuation packets for optimum use of the buffer
space [7]. At the receiving end, L2CAP orders and reassembles the PDU and subsequent
SDU for higher layer protocols. L2CAP basic mode allows for three packet size configu-
rations: 48-byte minimum sized payload; 672-byte, default-size payload; and 64-kilobyte,
maximum-size payload [5].

In order to ensure that L2CAP channels with quality of service (QoS) commitment have
access to the physical channel, L2CAP manages scheduling between controller buffers and
the designated channels. The limited controller buffer size and the finite bandwidth of the
host drive the design of L2CAP’s controller buffer management. The L2CAP resource
managers also ensure that the host applications submit SDUs within the negotiated QoS
settings [7].

L2CAP also provides the Bluetooth protocol stack with error detection and retransmis-
sion of PDUs [7]. recommends this feature for "applications with requirements for a low
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probability of undetected errors in the user data." L2CAP further provides a window-based
flow control, similar to that of TCP, to manage the receiving device’s buffer allocation.
Recent enhancements to L2CAP provide two new modes of operation: a streaming mode
which does not provide re-transmission or flow control, similar to streaming data over User
Datagram Protocol (UDP); and an Enhanced Retransmission Mode (ERTM) that offers
improved performance over its predecessor.

Baseband
The baseband layer of the protocol stack prepares the data—packet format and address-
ing, power requirements, and timing—for access to and transport across the physical radio
medium. In order to properly provide access to different radio access requests, the base-
band first negotiates an access contract for each request. This access contract serves as a
QoS agreement so that the user application may operate properly under a certain expected
performance level. Once the baseband has negotiated the access contract, it will then grant
radio medium time slots for each application based on the respective QoS agreement [7].

The baseband defines a physical channel by using a pseudo-random radio frequency (RF)
channel-hopping sequence along with the allocated time slot and an access code. It uses
the 48-bit Bluetooth device address as a seed for the pseudo-random RF hopping sequence.
The baseband uses the Bluetooth clock to determine the phase of the hopping sequence.
Section 2.1.1 details the coordination of this information between the master and slave
Bluetooth devices.

The baseband has a subcomponent, the device manager, that controls the general behavior
of the Bluetooth device. This device manager requests access to the physical medium
through the baseband so that it can search for available devices, connect to other devices,
and enable discoverability and connect-ability of the local device. The device manager can
also alter the device name and manage other basic device Bluetooth functionality [7].

2.2 Previous Work
Advances in Mobile Mesh Networks have led to the creation of proprietary text-based com-
munications applications. Bluetooth and Wi-Fi Direct enable these types of applications to
communicate without the use of infrastucture-based connectivity [10]. Apple has devel-
oped their own API which incorporates the use of standard Wi-Fi, Wi-Fi Direct, and Blue-
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tooth technology to allow application developers to send "message-based data, streaming
data, and resources (such as files)" between mobile devices running an application that uses
this API [11]. FireChat, created by Open Garden, emerged in March 2014 as a proprietary,
infrastructure-less, text-messaging application [10].

2.2.1 Apple’s Multipeer Connectivity
The Multipeer Connectivity API provides applications with the ability to create commu-
nication sessions between the same application running on different devices. The API
works in two phases: discovery and session. During the discovery phase, when a user
runs an application, it will advertise basic information about the device and the types of
sessions it supports. Also during this phase, a user can search, through a graphical user
interface (GUI), those users advertising a specific type of session capability. The search-
ing user can then request other users to join a particular session. Upon a user accepting
an invitation, a session is created. While established as a member of a session, a device
can communicate with one or more members of the session (as this API is proprietary, the
specific details of how it forwards traffic is unknown). A session maintains a set of multi-
peer connectivity peer identifications (MCPeerIDs)—a combination of the application and
device’s unique identification codes. The application will use this MCPeerID for commu-
nication purposes and also to notify users when a member enters or leaves a session [11].
Apple maintains Multipeer Connectivity as a proprietary API, and Android devices do not
currently have their own version of this technology, making interoperability between device
types more difficult.

2.2.2 FireChat
FireChat uses Bluetooth, Wi-Fi Direct, and Multipeer Connectivity to connect similar type
devices running the application within a local area (within a typical maximum range of
40-70 meters), also known as nearby mode. FireChat, when operating in nearby mode,
enables directly connected devices within a chatroom to share text messages [10]. This
feature works only with devices in close proximity, and it does not advertise multi-hop
routing of messages in nearby mode [12]. The development of FireChat has paved the way
for new types of applications; however, it has also introduced its own set of advantages and
disadvantages.
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A key advantage to ad-hoc networks, such as FireChat in nearby mode, stems from the lack
of infrastructure, which means that government agencies and controlling bodies cannot
monitor nor collect message traffic. It also means that when an organization or a natural
disaster prevents the normal flow of data, users still maintain the ability to communicate
[10]. These advantages allowed protestors of the Chinese political system to communicate
through FireChat, anonymously, without government intervention or monitoring [13].

The greatest disadvantage to the FireChat implementation is an inherent lack of secu-
rity: [14] identified that the FireChat app does not allow for private messaging, nor does
it encrypt its data prior to transmission. Although large organizations may not have the
ability to monitor all messages, and a user can create a seemingly anonymous username,
an attacker could listen in on local conversations and gain potentially private information
from unsuspecting users.

As discussed in Section 2.2.1, the proprietary nature of connection methods prevent Apple
FireChat users from connecting and communicating with Android FireChat users, when
operating independent of internet connectivity [15]. This greatly limits the scalability of
such a communication method. This complication comes from FireChats reliance on the
Multipeer Connectivity framework for Apple users.

2.3 Summary
This chapter discussed the basic building blocks of Bluetooth. Building a piconet requires
an understanding of Bluetooth protocol stack, specifically how devices connect and dis-
tribute data. In order to build an Android application that allows a scalable number of
devices to share information without any infrastructure, it is important to understand how
piconets can combine to build a scatternet. Lastly, this chapter examined proprietary soft-
ware that uses Bluetooth and other standards to allow devices to share information. Chap-
ter 3 will build upon this knowledge in the development of open-source software that uses
Bluetooth scatternets to allow multi-hop sharing of data across Android devices so that
members of small tactical units may communicate without established infrastructure.
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CHAPTER 3:
Design and Implementation

The use of smart devices on the battlefield provides ground combat forces the ability to
use several different wireless communications protocols—Bluetooth, WiFi, and other net-
work technologies—to create ad-hoc networks. With the ability to share data across these
varying protocols simultaneously, the smart device can bridge data received from one pro-
tocol onto another, creating a more robust, infrastructure-less network. Figure 3.1 abstracts
the idea of bridging Bluetooth scatternets with WiFi and other wireless protocol networks.
This bridging concept gives warfighters the flexibility to move about the battlespace, while
maintaining network connectivity, unaware of the shifting between wireless protocols that
occur as the distance and throughput requirements change.

This thesis will build the first stage of this overall network design using the Bluetooth scat-
ternet to build and maintain the network. It will do so through a user application running
on the Android OS. This application will use the Bluetooth satternet to provide warfighters
with an ability to communicate via chat messaging to all participating members. Chat mes-
saging, also known as chat, allows ground combat forces to track accurate communications
and log the chat messages to be reviewed at a later time.

3.1 System Description
This thesis uses Java and Extensible Markup Language (XML) programming to create
an infrastructure-less Android chat application, named ChatterBox, that uses Bluetooth to
share messages. The ChatterBox application gets its name as a play on words of an ex-
tremely talkative person; however, it also comes from the concept of a three-dimensional
space in which conversations, or chatter, can occur. ChatterBox provides text-based com-
munications for small unit warfighters (e.g., a platoon of infantrymen) through the use of
smart devices and their embedded radio capabilities. The application runs on smart devices
that use the Android operating system, and it uses the device’s Bluetooth radio to build a
communications network for the devices. Smart phones and tablets are the intended device
for this application as infantrymen can easily carry these devices, and the Department of
Defense (DOD) actively pursues a tactical smart device for military operations. The design
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Figure 3.1: Concept behind infrastructure-less communications using inherent Smart
Device capabilities

of this application must allow a warfighter, one with little or no experience, to create a
connection between devices and begin communicating, with ease.

3.2 Application Description
ChatterBox provides the user with three screens in order to carry out the task of building and
communicating across a network: a start screen, a device selection screen, and a chat screen
(Figures 3.2, 3.3, and 3.4, depict the user interface (UI) screens for each, respectively).
The start screen prepares the device for initial Bluetooth operations. The device selection
screen provides the user with a list of Bluetooth devices from which the user can select.
The chat screen works as the UI for the last and most important activity and modules of
the application. The backbone to this last screen provides the framework for building and
managing connections, as well as, sending and processing the various messages.
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3.3 Start Screen
The start screen performs three basic, but essential, tasks before a Bluetooth connection
can be made: verify that the device has Bluetooth capability, establish a username, and
verify that Bluetooth is turned on. Figure 3.2 shows the feedback that the user will get at
the beginning of every step in this setup process.

Bluetooth Support The start screen must first verify that the device supports Bluetooth,
(i.e., it has Bluetooth capability). Although most current devices support Bluetooth, if it
is not installed or is malfunctioning, then this simple check prevents the application from
attempting to access something that does not exist, thereby crashing the whole system.
In the event that the device does not have Bluetooth capability, the app will shut down
gracefully while preventing harm to the overall device.

Username The second step in the start screen’s setup process is to prompt the user for a
username. When the user submits a name—a minimum of one character is required—the
application sets the provided name as the device’s Bluetooth name. This makes the Blue-
tooth device easier to identify by humans during the search for local Bluetooth devices
(see Section 3.4 for details). Although smart device’s default the Bluetooth device name to
the device make or model (e.g., SAMSUNG-SGH-I747 for the Samsung Galaxy SIII), this
step did not exist during the initial ChatterBox versions because the initial implementation
only used four devices, making it relatively easy to discern one device from another. As the
implementation progressed to eight devices, and with the realization that this application
could scale quickly, the importance of a username in identifying one device from another
became paramount. Since the devices do not share a common link and since there is no
infrastructure to verify a unique username, two users could have the same username; how-
ever, this application is designed for the small-unit warfighters with the expectation that
their standard operating procedures will ensure that two members of the same unit do not
share the same username.

The application also uses the name when creating ChatterBox messages (see Section 3.5.1
for more detail), which the application will use to display in the chat screen (3.5) and use
when storing messages to the device’s internal storage. Furthermore, the application stores
the name as a saved preference. The application will fill in the username with this saved
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Figure 3.2: Start screen setup progression

preference so that the user does not have to retype the username every time he or she starts
ChatterBox. If the user changes the username from what is filled in by the saved preference,
the new username will replace the old one as the saved preference. The username is not
intended as an authentication measure, merely as a way to identify one device from another.

Bluetooth Enabled The last step of the setup process ensures that the device’s Bluetooth
capability is turned on. This will allow the application to operate properly when creating,
maintaining, and sharing data across a Bluetooth connection. The Android OS has a limita-
tion within the Bluetooth API: it requires user agreement that ChatterBox can activate the
Bluetooth system. Furthermore, the user can deactivate the Bluetooth at any time, render-
ing ChatterBox unusable during the period where Bluetooth is not running. The application
cannot lock the Bluetooth system on, but when Bluetooth becomes active, it can reestablish
a connection with the group and continue communicating.

3.4 Device Selection Screen
At the completion of the start screen setup process, the application will display a device
selection screen. It begins by searching for discoverable devices within close proximity
(approximately less than 40 yards). It then filters the discoverable devices to only smart

20



phones and tablets. Once filtered, it displays a list of the remaining devices’ usernames
and media access control (MAC) addresses on the screen for the user to select. Figure 3.3
shows the screen shot of a device after finding locally available smart devices.

Figure 3.3: Device selection screen with displayed list of smart devices.

Limitation The Android OS prevents an application from making a device discoverable
without user agreement, and it only allows discoverability for a set period of time, in the
case of ChatterBox this time limit is 300 seconds. Although this works to limit malicious
software from broadcasting a device’s Bluetooth signature, and it prevents unnecessary
power drainage by making a device constantly run in a discoverable mode, it limits the
automation of ChatterBox by requiring user interaction every time the application requires
enabling the discoverable mode. This means that if a user does not select that his or her de-
vice become discoverable, then the searching device cannot find it; however, if the search-
ing device does have a valid Bluetooth MAC address for the device, a connection can still
be made. ChatterBox relies on this as a means to create a connection between two devices
that have previously never connected, yet at least one is aware of the other in the scatternet.
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This is what enables ChatterBox to have resiliency within the scatternet when connections
break (see Section 3.5.3 for more information).

Once the user has selected the devices with which he or she would like to connect, the
device selection screen creates a list of of each device’s MAC address and passes this to the
last, and most important, screen, the chat screen.

3.5 Chat Screen
The chat screen comprises the bulk of the operational components of ChatterBox. The
screen displays the messages as the device receives them; specifically, it displays the user-
name and message payload from each ChatterBox message (See Section 3.5.1, CBMes-
sages, for details). It also has a drop-down menu that allows the user to select different
activities and tests to perform. Most importantly, it hosts the Connection Manager (CM)
(3.5.3) module, which handles the multiple threads for establishing and maintaining inter-
device connections, creating and parcing the CBMessages, and running throughput and
ordering tests.

Figure 3.4 shows an example of what the user will see when sending and receiving mes-
sages. Received messages will display the source name and the message; for example,
"Delta: checking in." Sent messages will display after a successful transmission, but the
username is replaced by "Me," for example, "Me: target acquired." The "SYSTEM" name
identifies messages produced by the ChatterBox system. These messages typically an-
nounce when a successful connection occurs or fails, when an established connection is
lost, and when a connection reattempt fails. These messages stay local to that particular
device (i.e., the device does not transmit these messages across the scatternet).

3.5.1 CBMessages
In order for the system to provide a multiple-hop message capability throughout a scatternet
(2.1.1), a standardized message format had to be developed. This standardized message,
named CBMessage, would provide a device several hops away from the initial source with
enough information to process and utilize the transmitted data. The CBMessage design
changed frequently throughout the development process; initially, it only had a payload,
until multiple-hop capability became a reality. From there, enhancements added a source
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Figure 3.4: Chat screen display

name, source and destination MAC addresses, a message time stamp, and a message type.

The CBMessage has a variable length header due to the inclusion of the source name. The
source-name header segment must be at least one byte long, but has no upper-size limit;
this design allows a war-fighting unit using this application to set a standardized naming
convention for each device, without limitation. The remaining header segments are fixed
length; however, all header segments are delineated by a single "%" sign. Although this
delineation method and the source-name segment increases the header length and overhead
for each message, it aids in human readability of the entire message when the message is
saved to disc for later access.

The source MAC address comes from the device’s Bluetooth MAC address, and is not
otherwise changeable through the application. Currently the destination address broadcast
MAC address of "FF:FF:FF:FF:FF:FF" is used for all outbound messages as the application
design intends for all users within a war-fighting unit to share information quickly without
having to reference a given user in particular.
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A time stamp is the next element of the CBMessage header. Every message is stamped
with a local time for that device, with hundredths of a millisecond precision, just prior to
sending. Since the device’s do not sync their clocks between one another, each device must
maintain a record of the most recent time stamp received from every other device. Other
devices use this time stamp to determine the freshness of the message. Section 3.5.3 gives
more detail as to how ChatterBox uses the time stamp.

The message type is the last element of the CBMessage header , and it is represented
by an integer value. The application currently uses four different message types: text,
connection status, throughput test, and ordering test. The text type messages encompass
those messages created by one user for the intended purpose of transmitting to the larger
group; furthermore, this is the only type where the user can control the message payload, all
other types receive the message payload from the local device. The connection status type
messages share any change in connection status between two devices. The last two types,
throughput and ordering test types, are used for testing and evaluation purposes. Section
3.5.3 provides more information on how the application processes each type of message.

During throughput testing, where the application attempts to transmit hundreds of large
messages successively, the receiving device would receive messages faster than it could
process, and it would not always delineate one message from the next. When individ-
ual messages are transmitted at normal chat-messaging pace, this issue does not arise. In
order to ensure that the system could handle any surge in message traffic, a beginning-of-
message and an end-of-message delimiters were added to the CBMessage. This allows the
application to positively identify when a message starts and ends. Each delimiter is one
byte in length. Figure 3.5 depicts the final layout of the CBMessage with respect to each
component and how many bytes each component occupies.

Figure 3.5: Breakdown of CBMessage format
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3.5.2 Menu Items
The chat screen has a drop down—or pop-up depending on the model of device (see Figure
3.6 for display variations)—menu that provides the user with the ability to find and connect
to local devices, activate Bluetooth discoverability, and launch a series of tests.

(a) Pop-up menu (Galaxy S3) (b) Drop-down menu (Galaxy Nexus)

Figure 3.6: Menu variations between device models

The Find Devices menu item invokes the device selection screen (Section 3.4). This al-
lows users to continuously add devices to the scatternet as missions change, or as a backup
solution in the event that an already established connection breaks but the automatic recon-
nect does not work. The Make Discoverable menu item works in concert with the previous
menu item, as it activates Bluetooth discoverability. The limitations paragraph of Section
3.4 discusses why a limitation in the Android OS requires such a menu item. The last two
menu items allow the user to launch throughput and message ordering tests. Chapter 4 will
discuss these tests in detail.
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3.5.3 Connection Manager
The CM module comprises the heart of the networking and message transfer and processing
capability of the ChatterBox application. It creates and manages multiple threads that listen
for connection requests, create connection requests, and maintain inter-device connections.
It processes each received message, verifying it is a new message, saving it, displaying
it, and forwarding it, as required. It also runs the throughput and message ordering tests
discussed in Chapter 4.

Connection Management Threads
The connection management section of the CM comprises three different threads: a lis-
ten thread, which listens for Bluetooth connection requests from other devices; a request
thread, which requests a connection with another device; and a connected thread, which
sends and receives CBMessages. The CM always maintains exactly one listening thread;
however, it may create and manage multiple request and connected threads depending on
the size of the piconet or scatternet and the state of connections, remembering that each
device can connect to, at most, seven other devices.

Listen Thread Upon the successful completion of the start screen setup phase, the CM
for each device will create a thread which listens for an incoming Bluetooth connection
request, a Listen Thread. Upon instantiation of the thread, it creates a Bluetooth RFCOMM
socket by which it can listen for requests. The thread provides the Bluetooth API with a
128-bit Universally Unique Identifier (UUID), a value unique to the ChatterBox app across
all devices. The API will build the connections down the Bluetooth protocol stack. If the
system successfully establishes an RFCOMM socket for this UUID, then the thread will
start to listen for requests that pertain to only that UUID. If the system fails to establish
and RFCOMM socket, it will return an error. From there the CM will destroy that thread
and begin a new one, allowing the device to listen for another connection attempt.

Request Thread When the user selects a series of devices from the device selection screen,
the application sends a list of those devices to the CM. The CM will create Bluetooth device
objects for each selected device. It will then create a thread for each device, which requests
a connection to that given device. Upon instantiation, the thread will request an RFCOMM
socket in similar fashion to that of the listening thread, providing the same UUID. The
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OS will then begin establishing a connection between the two devices using the layers
below RFCOMM in the protocol stack (see Chapter 2 for details). If the system creates
a successful connection between the two devices, it will return an established RFCOMM
socket to the request thread. If the connection is unsuccessful, the thread will receive an
error from the system, which will then prompt the CM to terminate the thread and reattempt
the connection (see Section 3.5.3 for details on how the CM handles connection failures).
If successful, however, the thread will return this socket to the CM, which the CM will use
to create the final thread in the connection process, the Connected Thread.

During implementation, if the CM attempted to connect to four or more devices, first time
connection success averaged 75 percent. In order to improve first time connection success,
a delay of 100 nanoseconds was added between the connection request for each device
(e.g., the time between connection requests for the first device and third device would be
200 nanoseconds). This delay improved the first time connection success to 99 percent,
without causing any noticeable application lag to the user.

Connected Thread Once the Listen Thread and the Request Thread have both established
a successful RFCOMM socket and provided it to the CM, the CM will then create a Con-
nected Thread, passing the socket as a parameter. The Connected Thread will use the
RFCOMM socket to create buffered input and output streams. These streams allow the
thread to send and receive data. Before a CBMessage is transmitted, it is converted to a
byte array format so that the output stream can properly send the data. On the receiving
side, when the input stream receives data, the thread takes all data in the buffer, converts it
back to its original CBMessage format and separates the individual messages, in the event
that multiple messages were in the buffer. With the messages separated, the thread passes
them to the CM for processing.

Thread Interaction Figure 3.7 depicts the interaction between these threads on a single
device and between shared devices. This is an overview of the application, and it does
not show the interactions that occur on the Bluetooth protocol stack. Device A acts as
the master and Device B as the slave. When Device B advertises itself to Device A (1),
Device A creates a Bluetooth device object which it then provides to the Request Thread
(2). The Request Thread creates an RFCOMM socket and uses the address of the Blue-
tooth device object to send a connection request, which includes the ChatterBox UUID,
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through the socket to Device B (3). Meanwhile, Device B will have created an RFCOMM
socket via the Listen Thread, providing the same UUID. When Device B receive’s De-
vice A’s request with the UUID, Device B will verify the UUID (this occurs below the
user-application level) and the two devices will establish a connection between sockets (4).
From that connection, both devices independently pass their established RFCOMM socket
to the Connected Thread, via the CM (5). Both devices will then share data through the
RFCOMM socket via the Connected Thread (6).

Figure 3.7: Interaction of threads between two devices

Connection Failure
This section refers to a Bluetooth network of devices as a scatternet, although the term is
interchangeable with the piconet term. Due to the constantly changing scatternet topology,
created while warfighters are on the move, the CM must handle inter-device connection
failures; furthermore, it should attempt to reestablish connectivity with a device that has
lost connectivity with the scatternet, and do so without unnecessarily draining the power
supply of an individual device or the overall scatternet. In order to do this, the CM has a
series of methods that attempt reconnection when an initial connection attempt fails as well
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as when an established connection between two devices fails.

Master Device Role When a user selects devices from the device selection screen, he or
she expects connectivity with each device; however, failures do happen, and the system
must be prepared for that situation. In the event that the master device’s CM cannot es-
tablish an initial connection with a particular slave device, or if an established connection
fails, the master will wait 10 seconds before making a second connection attempt. It will
continue in this manner for a total of five reconnection attempts. On the fifth and final
reconnection attempt, the CM creates a Reconnect Thread, which establishes a reconnec-
tion attempt timeline (details of the Reconnect Thread are discussed in a paragraph below,
titled the same). In order to limit the number of reconnection attempts made immediately
after an established connection failure, the master will solely attempt to reconnect during
the first minute. This will allow the master to maintain authority over the piconet should it
reestablish the connection, limiting extra communications at lower layer protocols. Figure
3.8 depicts the reconnection timeline of the master device.

Also occurring after an established connection failure, the master device determines if any
other devices were reachable through that connection. After the fifth failed reconnection
attempt, the master device will transmit a message to all other connected devices in the
scatternet that the reachability to the slave device, along with the reachability to any other
affected devices, is down. The master device will then create Reconnect Threads for each
device that it has determined is no longer reachable.

Slave Device Role A limitation of the connection process is that the potential slave device
does not know when another device is attempting to create an initial connection; therefore,
a slave device has no way to recover from an initial connection attempt failure. After an
established connection failure, however, the slave can act to reestablish a connection. When
the failure occurs, the slave device creates a Reconnect Thread, which it will use to create
a reconnection attempt timeline; furthermore, after waiting 60 seconds to allow the master
device to reestablish connectivity, it will send a message to all other connected devices,
notifying them of the failure so that they may take any necessary action. The slave device
also determines that all other nodes which were reachable through that connection are now
no longer reachable; therefore, it will have to attempt to reestablish a connection with them
so that the scatternet can continue to operate. It will again create a Reconnect Thread for
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Figure 3.8: Reconnection attempt timeline after initial connection attempt failure

each device that was previously reachable through that failed link, it will also notify the
rest of the remaining piconet/scatternet of the loss in reachability to those devices through
that slave device.

Other Scatternet Device Role All other devices within the scatternet may rely on the
disseminated information of the two devices that suffered the connection failure. When
receiving a message about a connection failure, and what devices were lost due to the
failure, the other devices in the scatternet must determine if those devices are no longer
reachable through any other path. If they are not, then each scatternet device will create a
Reconnect Thread for each device that is no longer reachable. The scatternet devices will
continue to disseminate the connection loss message throughout the scatternet to ensure that
all reachable devices receive it and can determine if they need to attempt a reconnection.

Successful Reconnection If the master device successfully reconnects to the slave device
during one of the first five reconnection attempts, it will do nothing other than stop attempt-
ing any further reconnections. The slave device, upon recognizing that the master device
has successfully reestablished connectivity, will stop its Reconnect Thread from attempt-
ing a connection; furthermore, it will not pass on the connection failure to any of the other
devices.

Should the master device fail to reconnect during the initial five attempts, then all other
devices which have created a ReconnectionThread will have the goal to reestablish con-
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nectivity. Once a device successfully establishes connectivity with any one of the lost
devices, it will notify all connected devices of the status change. It will then terminate the
Reconnect Thread for that device, as will all devices that received the successful recon-
nection status change. This will continue until all devices have reestablished connectivity,
either directly or through another device.

Reconnect Thread When the Reconnect Thread is instantiated, it will determine the initial
sleep time before it attempts a reconnection with the supplied disconnected device. It
determines this sleep time through a random number generator. It generates a random
time between 1 minute and the n+1 minutes, where n is the known size of the scatternet,
counting in 6 second intervals. For example, if there are four devices in the scatternet,
then the Reconnect Thread will select a time from the set of times 1:00, 1:06, 1:12, ... ,
4:48, 4:54, 5:00. The time window size grows with the scatternet size to allocate more time
between reconnection attempts in the event that all devices within the scatternet attempt to
reconnect with a lost device.

The original implementation only chose an initial sleep interval from the same range, but
at one-minute intervals. This led to a high probability that two devices would awake and
then attempt to reconnect at the exact same time. This raised issues if both devices were the
original master and slave because their simultaneous reconnection attempts conflicted over
which device was the new master and which was the new slave, causing the application
to crash and restart. With the devices having 10 times as many sleep times from which to
choose, the probability of the original master and slave awaking at the same time decreases.
In the worst case scenario, where they are the only two nodes in the network, there is a five-
percent probability that both devices choose the same six-second time slot in a two minute
window.

After the initial sleep and reconnect, the Reconnect Thread will then sleep for n+1 minutes
before attempting the second reconnection. It will conduct the same pattern again, but after
a third reconnect failure it will double the sleep time. It will continue to do so until doubling
its sleep time meets or exceeds 20 minutes. It will continue to sleep at 20 minute intervals,
until the device reconnects successfully or until it is notified of another devices successful
connection.
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Figure 3.9 depicts a Reconnect Thread’s timeline, if it generates an initial sleep time of one
minute, ten seconds, and it knows of four devices in the network (including itself). If the
relative initialization time is 0:00 (minutes:seconds), then it will attempt its first reconnect
at time 1:10. It will continue down the timeline if the reconnect attempts are unsuccessful.

Figure 3.9: Reconnect Thread timeline with a known network size of four devices

Message Processing
Upon successful receipt of a CBMessage, the CM must properly process the message. In
order to do so, it initially parses each segment of the CBMessage header and the payload.
This section will discuss each phase of processing and how the CM processes the standard
chat message and the connection status message. Chapter 4 will explain how the CM
processes the test messages.

Sender The Connection Manger will determine if it knows the sender. If it is unaware of
the sender, then it will build a database record of all required routing and connectivity status
information for that device. The CM may be unaware of a distant scatternet device, so, in
order to prevent a database crash, this check must occur.

Time Stamp Once the CM knows the sender, it will determine if it has previously seen
this message. The CM keeps a mapping of known devices in the scatternet to the most
current CBMessage time stamp from that particular device. If the CM processes a message
with a time stamp that is older than the current mapping value, it dismisses the message as
stale and drops it, neither saving the time stamp nor forwarding the message; otherwise, it
determines it to be a new message, maps the message’s new time stamp to the sender, and
forwards the message on to all other connected devices.

Chat Message The CM must then process the message based on message type. The easiest
message to process is the standard chat message sent from a user. In the case of a chat
message, it will write the entire message, to include the header information and a timestamp
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of when the message was processed, to non-volatile memory in human-readable format. It
will then display the message sender and the message payload for the user in the Chat
Screen (see Figure 3.4 for example).

Connection Status Message The connection status message is potentially the most diffi-
culty to process as the payload holds status information about varying scatternet devices,
and the CM must verify that the status information applies to the host device. The CM
first separates the payload into the different status updates (Note: A sender will only cre-
ate and send a connection status message pertaining to the status of devices with which it
is directly connected; however, it will forward all connection status messages from other
devices within the scatternet, as long as it is not considered a stale message). The CM will
then parse the three elements from each status update: the device name, the device MAC
address, and the status (i.e., up, down, unknown). It will then verify if it is aware of the
device to which the status pertains. If it is unaware of the particular device, it will create
all of the necessary database information for it.

If the connection status informs the CM that the device connection is established (i.e., up), it
will add the device to the routing table with the next hop being the directly connected device
from which the message came. It will also check if there is a Reconnect Thread running
for that device, and if so, it will cancel it. Should the status inform of device where the
connection is down or unknown, the CM will remove the device from the routing table. It
will also create a Reconnect Thread for this device, ensuring the resiliency of the scatternet.

3.6 Summary
This chapter discussed the inner-workings of the ChatterBox application. It discussed the
initial operational concept for the application development: to enable small warfighting
units with direct communications using only the embedded Bluetooth radio of a tactical
smart device. The chapter then walked through the three application screens with which
the user will interact, and some of the subcomponents of each screen. Lastly, it discussed
the CM: the core of the application. The CM creates connections, distributes data across
connections, processes messages, and most importantly builds a smart scatternet that is
capable of reconnecting disconnected devices regardless of where they emerge on the scat-
ternet topology. Chapter 4 will detail testing the viability of the system in operation.
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CHAPTER 4:
Testing and Evaluation

4.1 Overview of Testing
The evaluation for this thesis involved testing three different aspects of the ChatterBox net-
work: throughput at the application, order of message delivery at the user application layer,
and network recovery from connection loss. The throughput test measures the amount of
data transmitted and processed by the user application per unit of time. The second test,
testing message delivery order, verifies that messages received across the system do so
in the order in which they were sent, without loss. The last test, network recovery from
connection loss, examines the capability of the ChatterBox Bluetooth scatternet to recover
from the loss of a master or slave device (i.e., rebuild the broken connections of those
devices within connectivity range). These tests demonstrate the feasibility of using a Blue-
tooth network as the base layer for the greater infrastructure-less communications network
of tactical smart devices, as represented in Figure 3.1.

4.1.1 Devices
The throughput test uses four different Bluetooth capable devices: one tablet and three
smartphones. Table 4.1 shows the basic information of each device. The test distinguishes
between the devices based on their assigned device names (i.e., Alpha, Bravo, Charlie,
Delta). Samsung manufactures each of the phones and all phones run the Android operating
system. The devices all use Bluetooth 3.0 interface cards developed by Samsung.

The message order and network recovery tests use the above four devices, plus an addi-
tional four to evaluate characteristics of a more robust scatternet made of multiple piconets.

Device Name Device Model Device Type Bluetooth Version Android Version
Alpha Samsung Galaxy Tab 10.1 Tablet 3.0 3.0
Bravo Samsung Galaxy Nexus Smartphone 3.0 4.3

Charlie Samsung Galaxy Nexus Smartphone 3.0 4.3
Delta Samsung Galaxy Nexus Smartphone 3.0 4.3

Table 4.1: Test-device information
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Samsung manufactured the additional devices, which all run the Android operating system.
Table 4.2 provides the basic information for each device.

4.2 Throughput Testing
Testing the throughput of the Bluetooth, text-based, messaging application requires four
fundamental steps: throughput test development, baseline testing, field testing, and data
parsing. Baseline testing provides a best-case scenario (i.e., minimum distance) for
throughput of the application; whereas, the field testing first determines the maximum dis-
tance at which two devices can maintain a Bluetooth connection and then tests the through-
put at that distance. The data parsing portion of the test requires pulling the data size and
the timing information from each device and determining the average throughput for each
connection.

4.2.1 Test Plan
The throughput test implements a series of seven test phases between each device-pair con-
nection (e.g., Alpha-Bravo, Alpha-Charlie, etc.). Each phase builds a set of fixed-sized
messages—based on payload size—and continuously sends that message across the Blue-
tooth connection 100 times. The payload sizes start at 128 bytes and double at each con-
secutive phase, up to 8192-byte payloads.

During initial test runs, limitations on the receiving node’s message processing software
were discovered: the messages came in at such rapid pace that the receiving devices’ mes-
sage processor, after delivery from the RFCOMM socket buffer, would sometimes include
one or more messages as a payload of the first message in the buffer. This meant that the
messages required a start-of-message and end-of-message delimiter—one byte for each—
at the application level. The final calculations take into consideration each of the messages

Device Name Device Model Device Type Bluetooth Version
Echo Samsung Galaxy Tab 10.1 Tablet 3.0 3.0
Fox Samsung Galaxy S III Smartphone 4.0 4.0
Golf Samsung Galaxy S III Smartphone 4.0 4.0
Hotel Samsung Galaxy Nexus S Smartphone 2.1+EDR 2.3

Table 4.2: Additional test-device information
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exact payload size along with the varying header size and the two-byte message delimiters.

The receiving device saves the message size and receipt time, using nanosecond precision,
into an array. It does not save the message. The actual messages hold no pertinent infor-
mation and saving them would unnecessarily consume limited memory resources. Upon
completion of each of the seven test phases, the receiving device uses a separate thread to
write the array of messages to non-volatile memory. Waiting until the end of each phase
to save the data minimizes the time between message timestamps, and it frees memory
resources for subsequent phases.

The user activates the test procedure by selecting it from a dropdown menu. Both devices
display the progress of the test as chat messages, notifying the user at the start of the test,
the start of each phase, and the completion of the test. In order to gain more data points for
analysis, when the user activates the test, the test runs ten consecutive times.

4.2.2 Baseline Testing
This research requires a baseline test in order to determine the baseline throughput that
ChatterBox could achieve at the minimum distance (< one foot) on a flat surface—two
identical wooden platforms. In order to build such a baseline, each device individually
connects with every other device and then runs the test. In an attempt to minimize conflict-
ing signal noise in the 2.4 to 2.485 GHz spectrum, the tests were conducted at a remote
location—an isolated football field (see Figure 4.1 for test location and examples of the
wooden test platforms)—where no discoverable Bluetooth devices or active WiFi signals
were detected. While the tests were conducted, all other devices were powered off, except
for the two test devices.

For the baseline tests, each pair of test devices sat parallel to each other, in a portrait orien-
tation, exactly ten inches apart at the inner edges. Four separate devices create 6 different
bi-directional connections for a total of 12 testable links. At the completion of each test,
the Bluetooth connection and the ChatterBox application on each device were terminated,
and both devices were powered off. This added time to the baseline testing; however, it
gave the phone, application, and connection a common starting point. At the completion of
all 12 tests, the saved test files were downloaded through a USB connection.

37



Figure 4.1: Throughput testing location and device platform

4.2.3 Field Testing
The field testing consisted of the same manner of tests as the baseline; however, the de-
vices sat at a far greater distance from one another, a distance that was determined prior to
conducting any tests.

The maximum connection distance for the field tests came from pairing the devices through
a Bluetooth connection. One device sat at the end of the football field, while the tester held
the other, walking a straight path along the football field, monitoring the connection. When
the phone notified the tester of the connection break, the distance, in meters, was noted.
The tester than walked back toward the stationary phone until the connection reestablished,
making note of the reconnection distance.

The first pair of devices to test for connection distance, a tablet and phone, far surpassed
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the commonly advertised Bluetooth connection distance of 40 yards. The test terminated
at 160 yards only due to the physical confines of the football stadium. At that distance, the
tablet and smartphone continued to hold a solid connection. This held true for all tablet-
to-smartphone connections; therefore, all tablet-to-smartphone, and vice-versa, throughput
tests were conducted at 160 yards.

Since the phones could maintain a two-way connection with the tablet at 160 yards, it
seemed that they should maintain the same connection distance for phone-to-phone; how-
ever, this did not hold true. This phenomena is most likely due to the larger antenna gain
of the tablet. The phone-to-phone connection achieved a maximum distance of 120 yards,
but the connection would break within the first few trials of the throughput test. The max-
imum sustainable phone-to-phone connection stabilized at 60 yards. The phone-to-phone
throughput tests all ran at this distance.

4.2.4 Data Processing
The last step in the test process requires processing the collected data to determine the
average throughput for each phase of each test trial. A Python script was created to parse
the data collected from each test and process it into useable details. The calculated average-
throughput results of the script were entered into Excel c©for graphing purposes.

The Python script has three modules: The first module separates the results from each test
trial into the corresponding seven phases, based on payload size (e.g., 128-bit payload,
256-bit payload, etc.). It then determines the per-message total byte count, the receipt time
of the first message, the receipt time of the last message, and the total number of messages
transmitted for that phase. It multiplies the message size by the total number of messages
to determine the total number of bits received during that phases time span. Finding the
time difference between the first and the last messages, the program divides the total bits
received by that time difference to calculate the throughput for that phase. A sample test
file was first created and run to verify the calculations of this module.

The second module takes the calculated throughput at each phase of the 12 test trials and
calculates an average throughput for that phase of testing across all test trials. The last
module combines each of the phase’s average throughputs across the connection into a
single file for graphing and analysis.
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4.2.5 Throughput Results
The results of the baseline and field tests are divided into four graphs. The separation comes
from the distinct difference in connection distances between the tablet-to-phone connec-
tions (160 yards) and the phone-to-phone connections (60 yards); therefore, this graphical
separation allows easy comparison of the baseline throughputs to the corresponding dis-
tance throughputs.

Figure 4.2 shows the throughput results of the tablet-to-phone connection baseline and 160-
yard throughput tests. The 8192-byte payload messages achieve the maximum baseline
throughput of 1.857 Mbps between all connections . In comparison to the 160-yard tests,
the 8192-byte payload messages achieve an on-average throughput of 360.4 Kbps—over
a five-fold decrease in performance. The difference in performance is attributed to the
distance between devices.

Figure 4.2: Tablet-to-phone connection throughputs. Baseline results are annotated by
solid lines, and 160-yard results are annotated by dashed lines.

Figure 4.3 depicts the phone-to-phone baseline and 60-yard throughput test results. The
highest throughput for the baseline tests came, again, from the 8192-byte payload mes-
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sages, averaging 1.875 Mbps for all connections. The common trend did not hold for the
60-yard connections; instead, the highest throughput came from the 4096-byte payload
messages, which achieved an on-average throughput of 698.4 Kbps. At 60 yards the con-
nections can transmit one-third the amount of data than that of the baseline, in the same
time span.

Figure 4.3: Phone-to-phone connection throughputs. Baseline results are annotated by
solid lines, and 60-yard results are annotated by dashed lines.

4.3 Message Order Testing
The Bluetooth core protocols provide reliable delivery of data at their respective layers;
however, the Bluetooth specification states that the core protocols do not offer the func-
tionality of network routing. As such, the forwarding of messages from one device to the
next happens at the user-level application, in the case of ChatterBox, the CM performs this
function. Therefore, tests must be conducted to ensure that the forwarding process happens
in a manner that does not interfere with the order of message delivery. The CM has a built-
in test that transmits a set number of messages of increasing size throughout the network.
When the user activates this test, theses messages propagate across the scatternet, at the
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completion of the test, all receiving devices will report the number of messages received
in order, verifying that all messages were delivered in order. This section will discuss the
details of the test software, the test scenarios, and the results of the tests.

4.3.1 Test Software
The message ordering test can be initiated through the chat screen menu, detailed in Section
3.5.2. Selection of the "Order Testing" menu item will initiate a thread, named the Order-
ingTestThread, within the CM. The OrderingTestThread of the test device—the device
initiating the test—sends a message across the scatternet that tells the other devices that
the message ordering test has been initiated. Upon receipt of this message, the receiving
devices prepare the counters necessary to determine the number of received test messages.
The test device then sends 6 rounds of test messages; each round includes 50 messages of
increasing payload size. The first round has a message payload size of 128 bytes, then each
subsequent round doubles the payload size of the previous round, up to 4096 bytes. The
test device announces the start of each new round by sending a message stating the number
of messages and payload-size of each message in the round. At the conclusion of all six
rounds, the test device sends a message stating the conclusion of test. This final message
triggers the receiving devices to display, through system message on the chat screen, the
number of messages received.

The message logs, saved to non-volatile memory, are downloaded and processed to verify
that the message time stamps are in ascending order

Limitations

The largest limitation on the test is the payload size. As shown in the throughput test results,
the ideal payload size is 8192 bytes; however, during development of the message ordering
test, the test device suffered from memory allocation issues which prevented sending a
series of different 8192-byte, or higher, payload messages. The throughput test uses the
same message and sends it repeatedly, which does not invoke the same memory allocation
issues. Many steps were taken to reduce the amount of memory used, but the best case
scenario for the test involved 6 rounds of 50 messages at the increasing payload size.
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4.3.2 Test Scenarios
Testing the message delivery order of the routing system involves analyzing both piconets
and scatternets of varying size and complexity. The initial tests involved a simple piconet
of two devices, initiating the test from both devices. The piconet testing grew in size and
complexity, testing an eight-device piconet (one master, seven slaves), initiating the test
from three different slave devices and the master device. The last test involved building a
three-piconet scatternet where two piconets contain three devices and one piconet contains
four (the masters of the two smaller piconets serve as slaves in the larger). The final test
scenario initiated tests from a slave in each piconet, one master-slave device, and the one
master device. By initiating the test from multiple vantage points within each scenario,
it ensures that the master, slave, and master-slave roles all perform the forwarding and
processing of messages in the same manner. Figure 4.4 depicts the network topology of
each test scenario with the test initiators identified for each scenario.

Although inter-device distance played an important role in the throughput results, it was
not considered an issue for this test because the layer being tested was that of the applica-
tion. The Bluetooth core protocol stack provides a QoS that includes guaranteed delivery,
so the focus of the test was on the application’s ability to process messages and forward
them along the other logical links in the network without change to order or loss. Since
this processing and forwarding component operates independently of connection distance,
and because lower-layer Bluetooth protocols offer guaranteed delivery, testing at varying
distances was deemed inconsequential. Of note, all tests were conducted at a distance of
less than one meter.

4.3.3 Test Results
Each scenario was created and tested through three separate trials, varying the roles of the
devices within the network, to ensure reproducibility of test results. In the first trial of the
first test scenario (a piconet of two devices), a tablet served as the master to a smart phone;
in the second trial, a tablet served as a slave to a smart phone; and in the last trial, a phone
was tested with another phone. In the second scenario (a piconet of eight devices), the first
trial involved one tablet as master to one slave tablet and six slave phones; the second trial
involved one phone serving as master to two slave tablets and five slave phones; and the last
trial involved the other tablet serving as master to the other seven devices. The three trials
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Figure 4.4: Graphical representation of message ordering test scenarios. Dark, solid-filled
devices identify those devices used to initiate the test software.

of the last test scenario involved a tablet as master with a master-slave tablet and phone, a
master phone with a master-slave tablet and phone, and a master phone with master-slave
phones.

Each trial of tests included initiating the tests from the designated devices, identified in
Figure 4.4. Upon completion of each trial, the message logs of each device were analyzed
to verify the ascending order of time stamps. In all trials of all test scenarios, each receiving
device reported receiving 300 test messages, and log verification ensured that all messages
were received and processed in ascending order. Table 4.3 outlines the test scenarios, the
device topology for each trial, the number of messages reported received by each device
(300 messages for each initiating device), and the percentage of messages delivered in order
as verified by device log timestamps.

4.4 Network Recovery from Connection Loss
Warfighters will inevitably move about the battlefield, and they will not always be within
connectivity range of one another nor will the topology of their networked smart devices
remain the same. The ChatterBox network must, therefore, gracefully handle loss of a
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Test Scenario Iteration Master Slave
Number of
Initiating
Devices

Total Messages
Received by Each
Network Device

Percent Messages
Verified Delivered

in Order

1
1

Tablet
(Alpha)

Phone
(Bravo) 2 600 100%

2
Phone
(Fox)

Tablet
(Echo) 2 600 100%

3
Phone

(Charlie)
Phone
(Hotel) 2 600 100%

2
1

Tablet
(Echo)

Tablet
(Alpha)
Phones

(B-D, F-H)

4 1200 100%

2
Phone
(Golf)

Tablets
(A, E)
Phones

(B-D, F, H)

4 1200 100%

3
Tablet

(Alpha)

Tablet
(Alpha)
Phones

(B-D, F-H)

4 1200 100%

3
1

Tablet
(Alpha)

Master-Slaves
(E, F)

Phones
(B-D, G, H) 5 1500 100%

2

Tablet
(Delta)

Master-Slaves
(E, F)

Tablet
(A)

Phones
(B, C, G, H)

5 1500 100%

3

Phone
(Bravo)

Master-Slaves
(C, D)

5 1500 100%

Table 4.3: Breakdown of message ordering test scenarios. Devices are listed by common
names, or abreviations thereof. Full device information can be found in Tables 4.1 and 4.2

device from the network and a change in network topology. This should be done in a
timely and seamless manner.

The last, and potentially most important, test conducted on the ChatterBox network is that
of its resiliency to connection loss, and its reconnection capability. This test examines
two aspects of the network resiliency: the time taken to reconnect a lost device and the
time taken to reconfigure the network to continue communications with all devices within
Bluetooth range. This section will discuss the testing framework and the results of the tests.
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4.4.1 Testing Framework
The framework for this test is broken into three scenarios, based on original network topol-
ogy. It is imperative to emphasize the point that only the original topology is well known
and understood. As the ChatterBox network recovers from loss, it rebuilds itself into a
topology that may or may not be the exact same. The point of the test is not to verify
that the topology is the exact same, rather to verify that the topology created still allows
communication of all devices within range.

The first test scenario involves a piconet of only two devices. While this scenario has limi-
tations in the ability to test the networks ability to autonomously reconfigure itself (because
there are not enough test devices to do so), it will verify that the ReconnectThread attempts
reconnections in the desired timeline, and that two devices can reconnect, regardless of the
length of time they are separated.

The second scenario, involving a piconet of eight devices, is broken into two sub-scenarios.
The first sub-scenario examines the effects of removing the master device from the network,
measuring the length of time for the other seven devices to rebuild the network, and the
length of time to reincorporate the removed master device, once moved into connection
range. The second sub-scenario examines the effects of removing the master and three
slaves from the piconet. This test will measure the ability of both smaller piconets to
recover and then reintegrate once brought within connectivity range.

The last scenario verifies the ability of a scatternet to recover from loss when the master de-
vice, a master-slave device, and two slave devices are removed from the scatternet. Again,
the test will measure the time taken for both sub-networks to rebuild and then reintegrate
when brought back within range.

Figure 4.5 depicts the three test scenarios, including the second scenario’s sub-tests. The
dark shaded nodes identify those devices which were removed from connectivity range of
the lighter devices.

4.4.2 Test Results
During development and implementation, the first scenario was conducted numerous times
across all devices. For the final evaluation, two smart phones (devices Bravo and Charlie)
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Figure 4.5: Graphical representation of network recovery test scenarios. Darkened devices
identify those devices removed from initial network topology.

were used since smart phones have a shorter connection distance and can therefore more
rapidly create a connection loss. The final test was conducted 20 times, measuring the time
difference between the notification of connection loss and the notification of connection
reestablishment. The average time for reconnection was 41.87 seconds with a standard de-
viation of 13.22 seconds. There were five occasions where the time to reconnect exceeded
one minute. Of those five, three of them resulted in a role-reversal between the master and
slave, and one resulted in the master device application crashing, as both devices attempted
to reconnect near simultaneously. In the occasion where the device application crashed,
when the application was restarted, the two devices connected without user involvement in
less than one minute. Of note during testing, the two devices were left outside of connec-
tivity range for over six hours. When the devices were brought back within connectivity
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range, they reconnected in under seven minutes. Although this amount of time to wait for a
connection is quite large, the ReconnectThreads of each device after 6 hours of separation
only attempt a reconnection every 20 minutes; furthermore, with only two devices in the
network, the worst-case wait time for reconnection could approach 20 minutes. Delaying
the time between reconnection attempts prevents unnecessarily attempting reconnections,
and therefore wasting battery power, more frequently. Further work could include opti-
mizations to this process.

Building the exact topologies laid out in second and third scenarios proved difficult because
of the networks ability to reconfigure quickly. If a connection failed during the setup pro-
cess, the network would begin to take over and reconfigure itself as needed. In both cases,
the test topologies were built as designed three times without interruption.

In the case of the second scenario, sub-scenario one, the average time taken for the seven
devices to reconfigure the network topology so that all seven devices communicated took
93 seconds. With all seven devices connected, the network reintegrated the removed de-
vice in under 30 seconds. Sub-scenario two had similar results, although the subnetwork
of four devices that did not include the original master took slightly longer to reconfigure,
taking an average of 112 seconds to rebuild. Reintegration of both four-device piconets re-
quired less than 30 seconds in all tests. In the final scenario, the two four-device topologies
reconfigured themselves in 84 seconds, on average, and reintegration took 37 seconds.

4.5 Summary and Conclusion
Throughput Conclusion The tests offer some expected and very unexpected outcomes of
Bluetooth technology when linking mobile devices to send and receive data. As hypothe-
sized, the amount of throughput has a directly inverse relation to the distance between de-
vices: as the inter-device distance increases, the throughput decreases. This is most likely
due to data transmission errors at the lower layers of the Bluetooth protocol stack, which
then require retransmission of data at these lower layers. When the data is then properly
transmitted and brought up the protocol stack, the user application sees this as a decrease
in throughput. Hardware that can analyze Bluetooth transmissions would be required to
further analyze this hypothesis, but it exceeds the scope of this thesis. The throughput also
shows the common tendency to increase as the payload size increases, up to a given point;
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however, the 160-yard throughput does have a decline in throughput from the 512-byte
payload through the 2048-byte payload. This may result from inefficiencies in the software
that hit a limitation at those message sizes, but the throughput increases again at the 4096-
and 8192-byte payload sizes.

The very surprising outcome from the tests came from the achievable connection distances
of the devices: the smaller 60-yard communication distance still outperforms the advertised
Bluetooth distance of 10 to 40 yards. The 160-yard communication distance comes as a far
greater surprise—a four-fold increase over the advertised distance. The most likely reason
for this is that the tablet has a higher gain antenna that can allow greater distance connec-
tions. A search for information regarding these antenna only produces the manufacturer
and version number.

These achievable distances, paired with their measured throughputs, show that a smart
device network built on a Bluetooth foundation can exist as a viable option for text-based
communications systems on the battlefield; however, further testing would be required to
determine the effects of terrain and obstacles on the network.

Message Order Delivery Conclusion This test demonstrated the reliable data delivery of
the underlying Bluetooth protocol stack as much as it does the user application. Since
Bluetooth guarantees delivery with an established connection, as long as the user appli-
cation handles messages in the order in which they are received from the Bluetooth stack
through the RFCOMM socket, then the processing and forwarding should continue in an
ordered fashion. The tests verified that the interaction of multiple threads within the user
application did not disturb the ordering of messages from the lower layers. Although the
results are unsurprising, the test was a necessary step in verification of the overall system.

Network Recovery Conclusion The test results show that a small network (eight devices
or fewer) can reconfigure itself when a network loss occurs. Waiting nearly two minutes
for the network to reconfigure may or may not be a desirable tradeoff for the warfighter,
but further operational, human testing would be required to understand the implications of
such a delay on the application’s utility for the warfighter.

The most notable observation from the last two scenarios of this test is that the network
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has an elastic quality where devices swap connections unnecessarily. As a simplified ex-
ample, if Alpha is connected to Bravo, and Bravo to Charlie, the reconfiguration behavior
may cause Alpha to connect with Charlie, thereby breaking the connection established with
Bravo. This may go on for several iterations, swapping every two to three minutes; how-
ever, it does stabilize. It was also found that chat messages help stabilize this behavior
because when a device receives a message from another, it notes that their exists a path to
that device through its one-hop neighbor and does not attempt a reconnection.

Overall Conclusion These tests show that the embedded Bluetooth system within smart
devices can be used to establish the base-layer of a useable, infrastructure-less commu-
nications network. The distance covered is shown to be far greater than that which is
advertised. Although this distance is not great, as compared to larger, infrastructure-based
networks, it permits communications between closely geo-located members of a tactical
unit. The throughput at these distances, though not necessarily ideal for large data transfer,
will provide adequate real-time chat capability. Since Bluetooth does not provide message
forwarding, the user application ensures that the messages are processed and forwarded in
the order in which they were received, guaranteeing that all tactical unit members receive
communications in the same manner. Lastly, the ability of the network to handle device
loss is imperative as unit members move about the battlefield. The final test shows that the
network can reconfigure itself, into as many sub-networks as it requires to still maintain
communications with part of the tactical unit. Although the ChatterBox system works, it
is still in its infancy, and the next chapter will explain some recommended follow-on work
which will create a more robust infrastructure-less network.
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CHAPTER 5:
Conclusions and Future Work

The aim of this thesis was to build an infrastructure-less, adaptable, real-time communica-
tions network of mobile devices through the development of user application software. The
designed system gives users the ability to conduct real-time chat across a Bluetooth-based
network. In our informal experiments, we observed that it provides a means of creating and
managing a network, forwarding network traffic, and seamlessly reconfiguring the network
topology in response to connection loss.

At the 160-yard, sustainable, line-of-sight connection distance, the application is capable of
nearly 500 Kbps with an average throughput of 360 Kbps and a minimum throughput of 100
Kbps. At 60 yards, the application delivers a maximum, average, and minimum throughput
of 1 Mbps, 700 Kbps, and 120 Kbps, respectively. This throughput, although not ideal
for real-time voice or video, is more than adequate to conduct network management and
real-time chat.

Although the results from the testing of ordered message delivery are underwhelming, pro-
ducing the expected behavior without error, it shows that application level software can
fill the gaps of lower layer protocols when creating an infrastructure-less network. Since
application level software is capable of bridging the gap between multiple Bluetooth con-
nections, it is conceivable that it can bridge the gap between multiple different types of
connections (Bluetooth, Wi-Fi Direct, cellular, etc).

The developed network has proven the ability to adapt the drastic changes in network topol-
ogy, including the loss of the central scatternet device that connects multiple piconets. The
network is flexible enough to establish newer subnetworks of the original based, when the
original network is unachievable due to device loss. It has also shown that when all de-
vices are back within connection range, it can rebuild a network of all devices from the
subnetworks. This flexibility does have limitation in the amount of time required to re-
establish connection—anywhere from tens of seconds to minutes. This research builds
the foundation for future research and enhancements to improve the timing and resource
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management—battery power—of the system.

This software builds the foundation for an advanced infrastructure-less network that will
allow the warfighter to conduct C3, using the intuitive, lightweight, highly-mobile attributes
of smart devices.

5.1 Future Work
This application provides the foundation for an infrastructure-less mobile device network;
however, there are areas where expansion could increase the scalability of the network
and enhance performance. Incorporating Wi-Fi Direct and cellular capability into the net-
work will increase the network’s geographic coverage area and the number of connectable
devices. Incorporating multiple types of transmittable data, such as imagery, audio, and
video, will improve the command and control (C2) performance of system. This section
discusses these items in detail.

5.1.1 Wi-Fi Direct
The Bluetooth network proved to have considerable more coverage area in clear operat-
ing environments than is advertised by smart device manufacturers; however, Wi-Fi Direct
is advertised to have a far greater coverage area and throughput than that of Bluetooth.
Incorporating Wi-Fi Direct capability into the ConnectionManager module will allow far
greater flexibility in managing the network. It is recommended that the ConnectionMan-
ager initiate connections through Bluetooth, and upon doing so, gathers all connection
information about the networked devices, specifically Wi-Fi Direct MAC addresses. If the
ConnectionManager requires greater throughput, or if a connection is lost and not quickly
re-established with Bluetooth, then the ConnectionManager could create a connection us-
ing Wi-Fi Direct.

Running multiple wireless protocols can have negative consequences, primarily a more
rapid depletion of battery power. The ConnectionManager should minimize the use of
multiple wireless protocols to the maximum extent practicable. This does not necessarily
mean that all connections should be primarily maintained with Bluetooth. Perhaps con-
necting multiple devices under a single Wi-Fi Direct umbrella would require less battery
power than individual Bluetooth connections. More research is needed to understand the
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benefits of different wireless protocols in establishing, maintaining, and transmitting data
over mobile network connections.

5.1.2 Cellular
The cellular capability of smart devices is typically associated with infrastructure-based
networks; however, it is a wireless medium common to all smart devices that could be ma-
nipulated to support an infrastructure-less network. Future work could include altering of
smart device cellular systems to create a network connection between devices. This may
require transmitting data in covert methods over the cellular control channels. If possible,
adding this capability could provide broader network coverage. Alternatively, Qualcomm
Technologies has worked since 2013 on developing LTE Direct, a device-to-device connec-
tion service over regulated communications bands [16]. Tapping into this resource could
expand, by orders of magnitude, the connectivity distance and throughput between devices.
Working with this technology will require registration with Qualcomm Technologies, who
can provide access to information, discussion forums, and LTE Direct APIs. Testing these
improvements will require thorough legal coordination as it manipulates data transmitted
over regulated communications bands.

5.1.3 Imagery
The ChatterBox application only supports transmitting text-based messages across the net-
work. Incorporating the ability to transmit imagery would provide warfighters with the
ability to share a common situational picture. This feature would require modification to
the GUI. It would also require enhancements to the message processing capability of the
ConnectionManager, so that it can proper display the images when received. The network
may require Wi-Fi Direct or other wireless protocols to transmit an image, depending on
the size of the image. Further investigation would be required to understand how certain
image sizes affect the overall network.

5.1.4 Voice and Video
Voice communication would prove instrumental in C2 of warfighting units as it is the tra-
ditional fall-back for all tactical communications. As Bluetooth is often used to transmit
audio from a smart device to a wireless speaker, it is conceivable that this enhancement
would work for at least a single point-to-point connection. Future work should incorporate
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voice transmission across the network, where one user could speak—real time—to all par-
ticipating users on the network. This would require analysis of how such data transmissions
affect the ability to maintain a stable network, battery consumption of such features, how
many devices can transmit real-time voice simultaneously, and which wireless communi-
cations protocols are more suited for such an enhancement. One potential solution may be
the incorporation of voice-to-text at the sender and text-to-voice at the receiver allowing
for leveraging the ChatterBox application prototyped by this thesis.

Along similar lines, enhancing the system with real-time video capability would add an-
other level of common situational awareness amongst combat units. Future work could
begin with sending recorded video across the network. Once the application can transmit
pre-recorded video across the network, then work could advance toward streaming real-
time video. Again, incorporating such enhancements would require research into suitabil-
ity of certain wireless protocols, network behavior, numbers of simultaneous transmissions,
and battery consumption.
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APPENDIX: Source Code Diagram

Figure 1: Diagram of source code interaction
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